【本期内容】

1. NX 快速定義加工座標

2. NX T型刀進行溝槽加工應用

3. 設計最佳化《Solid Edge Simulation》

4. New! 凱德售後部門正式上線

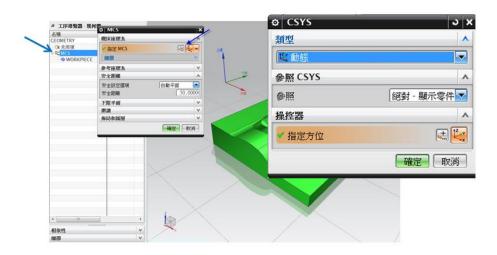
5. 活動: 7/10 Mazak 與 CADEX 聯合說明會

6. 活動: 7/28 起《世界一流公司向前走的秘密?》

更多技術專欄...

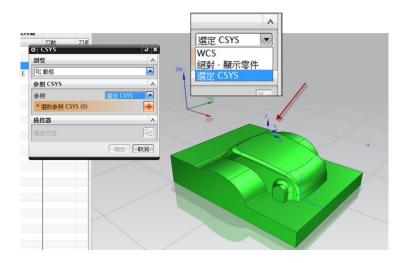
教育訓練課程時間表

CADEX 凱德科技 Facebook 粉絲團

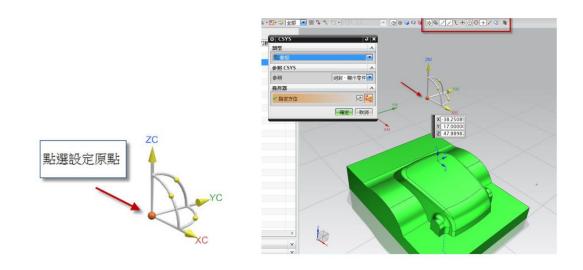

【NX 快速定義加工座標】

圖文: 謝易霖 Morgan

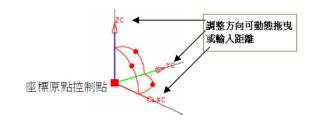
在 NX CAM 中我們該如何快速定義加工座標系?

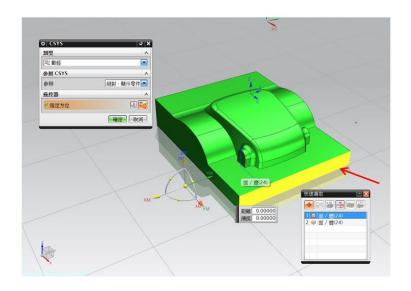

其實 NX 建構類型提供很多種方式,在此分享幾項快速的建構方式!

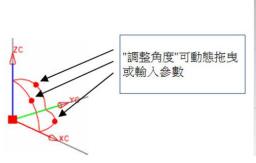
 在 NX「工序導覽器」→「幾何視圖」中,快點兩下 MCS 座標會出現設定對話框,我們點其 圖示中的座標圖示會出現設定選項。

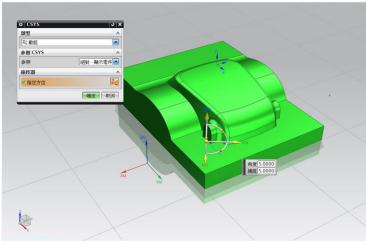


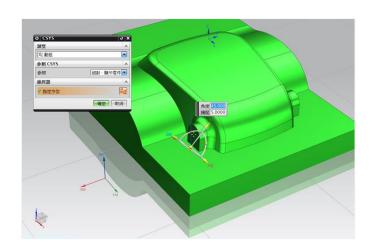
2. 如果我們已有事先準備好的座標系物件,可以選擇「選定 CSYS」點選座標系物件


即可設定完成。

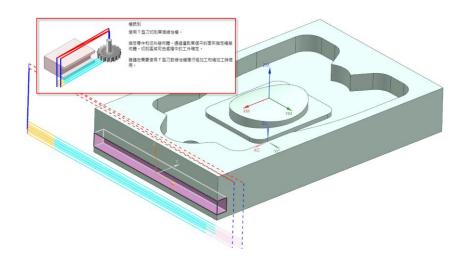

3. 或者我們選「動態」有提供快速設定「原點」「調整方向」及「角度」,如圖示,點選座標原點,可配合鎖點模式快速設定原點,也可直接 XYZ 對話框中輸入你已知的數值。


4. 點選「箭頭」,再點選物件,可參考已準備好的直線,也可點選平面參考垂直方向,或者在對話框中輸入數值。



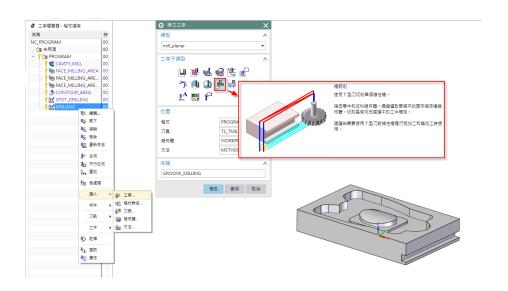


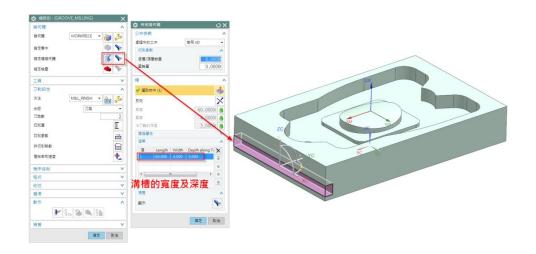
5. 點選「角度控制點」可拖曳調整,或輸入角度數值.。 …(完)



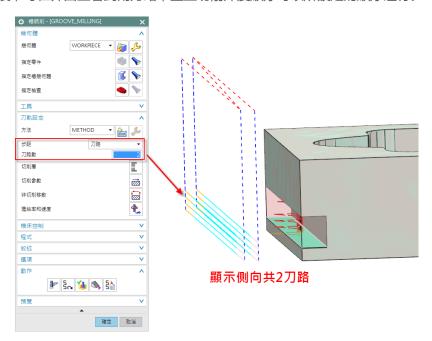

【NX T型刀進行溝槽加工應用】

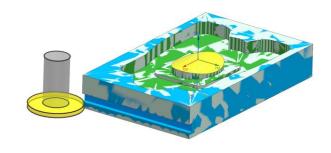
圖文: 周泊亨 Henry Chou

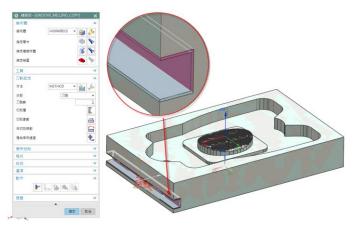

在 NX CAM 中,有一項加工方式為「槽銑削加工」,假設我們在產品上有某個加工槽並非 Z 軸投影式加工可執行加工,我們除了可以利用 2D 輪廓工法外,亦可使用體積辨識的槽銑削工法,在執行時可以辨識槽的長寬尺寸,並可調整需求的參數,即可達成加工路徑的生成,免去 2D 輪廓工法的複雜設定。


- 1. 首先,我們在執行加工模式時,設定一把**T型**刀具,此刀具的刀具形狀必須可以進入線性 溝槽才可以。
 - ※【(刀具直徑 頸部直徑)/2 必須大於 溝槽寬度】 【刀刃長度 必須小於 溝槽深度】

2. 接下來即可設定加工工法,此工法為【Mill_Planar】裡的工法。


3. 後續指定加工的區域, NX 即會運算此溝槽的寬度及深度,並且了解加工範圍。


4. 然後設定所需求的側壁刀路以及深度刀路數量,並可預覽深度刀路順序。


5. 之後生成後,可在介面上看到兩刀路,並且切削深度順序可以所設定的順序進行。

6. 可模擬殘料及切削路徑,確認切削狀況是否正確。

7. 假設要預設餘量進行精修, NX 也會運算上次刀路所留下的殘餘料, 更聰明的生成所需工法。···(完)

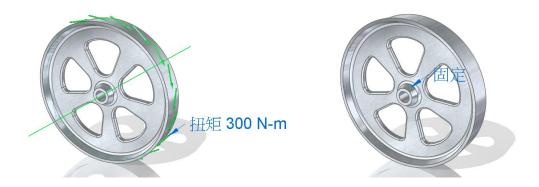
【設計最佳化《Solid Edge Simulation》】

圖文: 鄭婷文 Ava Cheng

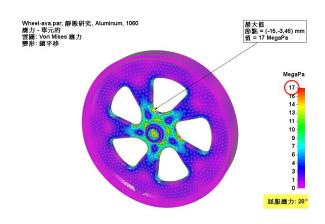
如何確認自己設計的產品達到最佳化?

- 如何在兼顧「品質」與降低「成本」之間找到平衡點?
- 該如何設計變更,才能讓產品達到最優化的效果?
- 怎麼樣在最節省時間的情況下找到最佳的結構外型?

....... 以上大概是產品設計師都會關注到的問題!


Solid Edge Simulation 可幫助您找尋到最佳的設計方案。

以下,我們將用一簡單例子來示範,如何利用「Solid Edge 設計優化」,找出模型的 最佳結構外型。



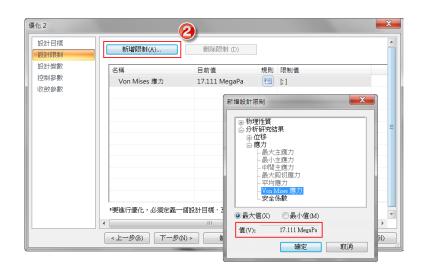
如上圖所示, 我們有一輪圈 3D 模型, 如何用最快、速最省時間的方法, 將此模型設計變更成為, 結構最佳的樣式?

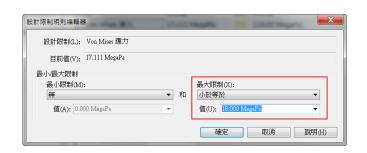
1. 首先,我們利用「Solid Edge Simulation」靜態分析功能,按步驟,將模型實際的「扭矩」和「固定」方式加入到模型中,並執行分析計算。

- 2. 「靜態分析」結果如下 -
 - 輪圈最大應力是 17 MegaPa
 - 降伏強度為 28 MegaPa
 - 安全係數最小都有 2 倍以上
 - ※ 最大應力沒有超過模型「降伏強度」,所以模型沒有破壞。

- 3. 接下來就可以直接使用「Solid Edge 設計優化」功能,依照我們定義的限制範圍,讓 Solid Edge 自動運算並求解,很快就能找出符合我們所需的模型樣式!
 - a. 按下「新建優化」,這時會跳出一對話視窗, 我們可依照所需要的限制, 進行相關的參數 與範圍設定。

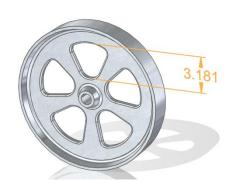
包含: 「設計目標」、「設計限制」、「設計變數」、「控制參數」以及「收斂參數」...等



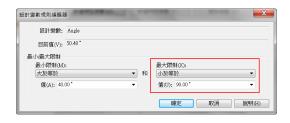


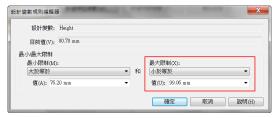
b. 首先, 我們「定義目標」, 此範例我們的目標是「質量」3.188kg。

c. 接著「新增限制」,選擇「Von Mises 應力」為設計限制,並指定 Von Mises 應力值必須「小於等於」18 MegaPa。(如下圖所示)



d. 接下來「新增模型變數」,選擇「角度」與「高度」尺寸作為「設計變數」。




※ 當滑鼠在「變數表」中點選時,模型上也會"亮顯"相對應的尺寸,方便我們找尋欲 定義的值。



e. 可分別給定「角度」和「高度」的限制值。

f. 最後設定「控制參數」及「收斂參數」,若沒有特別要調整,可按照預設值即可。

*要進行優化,必須定義一個設計目標、至少一個設計限制和一個設計變數。

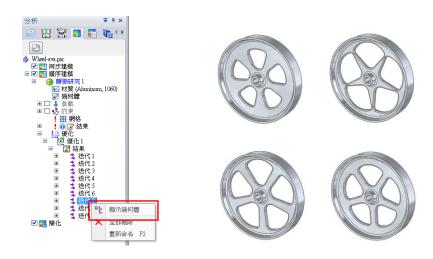
< 上一步(B) 下一步(N) > 儲存 取消 優化(O)...

- 4. 調整完成後按下「優化」,這時 Solid Edge 會開始對模型進行設計優化。
 - ※ 如下圖所示, 當進行優化處理時, 模型會自動更新外型, 不需要人工修改, 相當省時省力, 對設計者來說真的是非常方便的!

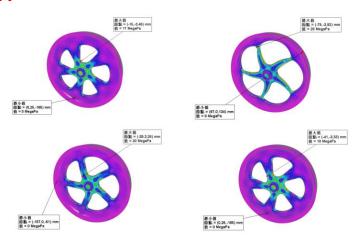
5. 優化完成後,會跳出以下對話視窗,您可以「檢視摘要」與「圖形」。

- 6. 如按下「檢視摘要」,這時會跳出一 Excel 表格,表格中包含: 「優化參數」、「優化結果」 與「處理結果」…等所有數據。
 - ※ 此範例, Solid Edge 幫我們迭代計算產生了 11 組結果

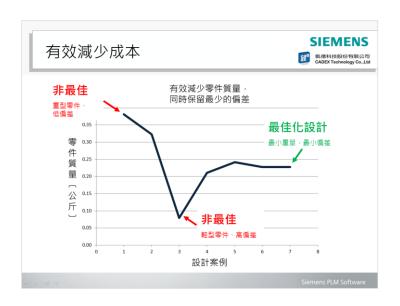
	A B	C	D	E	F	G	H	I	J	K	L	M
静態研究 2	優化 1											
療化已收斂	因為最新的設計變更是對收斂	医则维行的 。										
優化參數	單位											
設計目標		目標	目前值	目標類型	目標值							
	kg	質量	3.303	最小化								
設計限制		限制	目前值	限制值								
	MegaF	a Von Mises 應力	17.111	[;18.00 MegaPa]								
設計變數		類型	名稱	值	範圍							
	0	Dim	Angle		[40.00 °;90.00 °]							
	mm	Dim	Height	76.200	[76.20 mm;99.06 mm]							
優化結果	單位											
迭代		1	2	3	4	5	6	7	8	9	10	11
設計目標												
質量	kg	3.303	3.264	3.236	2.576	2.770	3.072	2.906	3.198	3.183	3.184	3.188
設計變數												
Angle	۰	40.000		40.000		63.975	73.410	66.530	48.218	51.620	51.185	50.485
Height	mm	76.200	76.200	80.772	99.044	99.047	80.990	91.450	80.813	80.797	80.824	80.785
設計限制												
Von Mises #		a 17.111	16.889	17.090	28.154	22.788	19.973	21.951	17.248	18.094	18.261	17.986
處理的結果	單位											
迭代		1				5		7	8		10	
總平移-最小		0			0	0	0	0	0	0	0	0
總平移-最大		0.076		0.079		0.108	0.094	0.100	0.082	0.084	0.084	0.084
Von Mises #						0.058	0.019	0.034	0.041	0.032	0.030	0.041
Von Mises #			16.889			22.788	19.973	21.951	17.248	18.094	18.261	17.986
安全係數-最		1.612				1.210	1.381	1.256	1.599	1.524	1.510	1.533
安全係數-最	大恒	642.603	578.431	598.886	579.545	478.862	1452.775	818.049	668.764	855.004	910.702	677.854


a. 我們可查看「安全係數-最小值」,除了第 4 組 "安全係數-最小值" 為 0.98 之外, 其餘都有達到 1 倍以上。

處理的結果	單位											
迭代		1	2	3	4	5	6	7	8	9	10	11
總平移-最小值	mm	0	0	0	0	0	0	0	0	0	0	0
總平移-最大值	mm	0.076	0.079	0.079	0.172	0.108	0.094	0.100	0.082	0.084	0.084	0.084
Von Mises 應力-最小值	MegaPa	0.043	0.048	0.046	0.048	0.058	0.019	0.034	0.041	0.032	0.030	0.041
Von Mises 應力-最大值	MegaPa	17.111	16.889	17.090	28.154	22.788	19.973	21.951	17.248	18.094	18.261	17.986
安全係數-最小值		1.612	1.633	1.614	0.980	1.210	1.381	1.256	1.599	1.524	1.510	1.533
安全係數-最大值		642.603	578.431	598.886	579.545	478.862	1452.775	818.049	668.764	855.004	910.702	677.854


b. 綜合「質量」、「Von Mises 應力」與「安全係數-最小值」等考量因素, 我們很快 找出第 10 組為: 兼具「質量」與「應力」的平衡, 且「安全係數」,又可達 1.5 倍, 這就是我們所找尋的最佳模型!

優化結果	單位											
迭代		1	2	3	4	5	6	7	8	9	10	11
設計目標												
質量	kg	3.303	3.264	3.236	2.576	2.770	3.072	2.906	3.198	3.183	3.184	3.18
設計變數												
Angle	0	40.000	50.000	40.000	89.923	63.975	73.410	66.530	48.218	51.620	51.185	50.48
Height	mm	76.200	76.200	80.772	99.044	99.047	80.990	91.450	80.813	80.797	80.824	80.78
設計限制												
Von Mises 應力	MegaPa	17.111	16.889	17.090	28.154	22.788	19.973	21.951	17.248	18.094	18.261	17.98
處理的結果	單位											
迭代		1	2	3	4	5	6	7	8	9	10	1
總平移-最小值	mm	0	0	0	0	0	0	0	0	0	0	
總平移-最大值	mm	0.076	0.079	0.079	0.172	0.108	0.094	0.100	0.082	0.084	0.084	0.08
Von Mises 應力-最小值	MegaPa	0.043	0.048	0.046	0.048	0.058	0.019	0.034	0.041	0.032	0.030	0.04
Von Mises 應力-最大值	MegaPa	17.111	16.889	17.090	28.154	22.788	19.973	21.951	17.248	18.094	18.261	17.98
安全係數-最小值		1.612	1.633	1.614	0.980	1.210	1.381	1.256	1.599	1.524	1.510	1.53
安全係數-最大值		642.603	578,431	598.886	579.545	478,862	1452,775	818.049	668,764	855.004	910.702	677.85


- 7. 最棒的是, Solid Edge 除了幫我們計算出一系列的"數據"之外, 連"圖形"也幫我們一併生成。 如下圖所示, 在分析的視窗裡, 「優化/結果」中可看到所有迭代的結果圖形, 當然也包含 所有的分析結果圖形, (如:應力結果圖)。
 - ※ 等於是得到分析數據的同時, 3D 檔案也同時間完成了!
 - ※ 在迭代結果上按「右鍵-顯示幾何體」,就可以看到自動迭代後的各種樣式。

※ 在分析(如:應力/位移)結果上快點2下,就可以看到自動迭代後的各種分析結果,如下圖所示。

■ 以上為「Solid Edge 設計優化」的例子示範,希望藉由此功能,能幫助各位在最短的時間, 用最有效率的方式,找到模型的最佳外型。…(完)

【凱德售後部門正式上線】連結網址

凱德科技售後部門成立提供您更完善的服務

凱德科技為擴大服務全國用戶已增設**售後部門**

自2015/07/01正式上線

有軟體使用問題? 想求救卻不知撥給誰? 有突然忘記功能在哪的問題?

全台客戶 撥打專線: (O2)7716-1899轉**售後部門** 專線為您排解問題!

www.CADEX.com.tw

【本月活動預告】

《活動 1》: 7/10 Mazak 與 CADEX 聯合說明會

地點:台中西屯區工業區 38 路 175 號

時間: 12:30~16:30 報名連結

《活動 2》: 7/22 台南場: 鈑金實務應用研討會

《活動 3》: 7/2~7/5 2015 年台灣國際木工機械展

地點:台北世貿中心南港展覽館

攤位編號: M1108(利偉木工機械有限公司) 期待您的到來

【座談會】: 7/28 起《世界一流公司向前走的秘密?》西門子協助您與工業 4.0 接軌

■ 7/28(二) 台北 ■ 8/27(四) 台南 ■ 8/28(五) 台中

世界一流公司向前走的秘密?

西門子協助您與工業4.0接軌

報名連結

凱德科技股份有限公司 CADEX Technology Co., Ltd.

Siemens PLM Software 專業企業顧問服務

台北 台北市內湖區新湖二路 168 號 2 樓

桃園 桃園市蘆竹區經國路 900 號 5 樓

台中 台中市西屯區台灣大道四段 925 號 10 樓之 5

台南 台南市永康區中華路 1-82 號 14 樓

TEL 886-2-7716-1899

TEL 886-3-271-9899

TEL 886-4-3703-1298

TEL 886-6-703-2659